Real-Time Erosion Using Shallow Water Simulation
نویسنده
چکیده
We present a new real-time hydraulic erosion simulation for Computer Graphics. In our system water runs over the surface and disintegrates the underlying layer of soil. The grit is simulated as a fluid with higher viscosity and moves on the ground of the water pool. When water evaporates, or the dissolved soil exceeds a critical level, the dissolved matter is deposited back on the ground for accumulation to occur. The grit motion as well as the water simulation are calculated by the shallow water simulation that is a 2D simplification of Navier-Stokes equations. This simulation has proven to be useful in many Computer Graphics applications because of the speed of calculation and the visual plausibility of the results. Our experiments show that the shallow water-based erosion is suitable for real-time simulation of a wide variety of phenomena including river and lake formation due to rain and evaporation, erosion of surfaces affected by a sudden splash of high level of water, mountain erosion, etc. The speed of simulation makes the algorithm suitable for real-time surface modeling and editing.
منابع مشابه
3D Numerical Simulation of the Separated Turbulent Shallow Flow around a Single Side Obstacle
In this paper, the performance of Reynolds Averaged Navier Stokes (RANS) simulations was evaluated to predict the flow structure developed by the presence of a sidewall obstruction in a uniform open-channel shallow flow. The study of these flow structures is important because they present in several real world configurations, such as groynes in rivers, where the erosion processes, mass transpor...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملHybrid time synchronization for Underwater Sensor Networks
Time synchronization is an important part of distributed applications over a sensor network. In this work we investigate time synchronization problems over a shallow UWSN, taking into account all main communication challenges of the water channel and observing its behavior in simulation and real tests. It is proposed an hybrid frame based time synchronization using both, LFM and OFDM communicat...
متن کاملAn improved numerical scheme for a coupled system to model soil erosion and polydispersed sediments transport
Overland flow and soil erosion play an essential role in water quality and soil degradation. Such processes, involving the interactions between water flow, suspended particles and soil, are classically described by a well-established system of PDE coupling the shallow water equations and the Hairsine-Rose model. The numerical approximation of this coupled system requires advanced methods to pre...
متن کاملUsing Weibull probability distribution to calibrate prevailing wind applying in oil spill simulation
In the Persian Gulf, the major source of oil pollution is related to the transportation of tankers, offshore production and discharges by coastal refineries. The water dynamical field has been obtained using a new hydrodynamic model. Local wind is recognized as the principal driving force combining to the water dynamic field to determine oil drift on the sea surface. The Weibull probability dis...
متن کامل